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The problem of reinforcing an infinite thin elastic plate with a circular cut-out by means of a concentric circular patch attached 
to the plate so that the circumferences of the cut-out and the patch overlap is solved. The stress state in the plate and in the 
patch, generated by stresses at infinity in the plane of the plate, is investigated. Examples are presented. © 2005 Elsevier Ltd. 
All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a thin elastic plate with a circular cut-out, occupying in the complex plane z = x + iy a domain 
Izl >-- Rt; and elastic circular patch Izl -< R2 (R1 < R 9  is placed on the plate and is attached to it with 
an overlap, without stretching or interlayers, along the circles LI: Izl = R1 and L2: Izl = R2 bordering 
the plate and the patch. The plate and the patch are divided by the curves L 1 and L2, along which they 
are attached, into domains SI: Ra < [z[ < R2, S 2" IZI > R 2 and S 3" Izl < Ra, S4:R1 < IZI < R2 
respectively. The plate and the patch are uniform, isotropic and have thickness, shear modulus and 
Poisson's ratio h, g, v and h0, go, v0, respectively. Specified normal stresses ~x, ~y and a shearing stress 
Xxy are applied at infinity in the plane of the plate. The rotation at infinity is co =. It will be assumed that 
the plate and patch surfaces touch one another without friction, that the space effects of stress 
concentration at the curves of attachment are negligibly small, and that the displacements of the points 
of these curves are equal and that the following equilibrium conditions are satisfied. 

(u + iV)l(t ) = (u + i19)3(t) = (u + iv)4(t) 

h ( X  n + i y n ) l ( t  ) + h o ( X  n + iYn)4( t  ) = h o ( X  n + iYn)3( t  ), t ~ L t 

(u + i o ) l ( t  ) = (u + i l ) )2(t )  = (u  + i o ) 4 ( t )  
(1.1) 

h ( X  n + i Y n ) l ( t  ) + h o ( X  n + iYn)4( t  ) = h ( X  n + iYn)2( t ) ,  t ~ L 2 

where (u + iv )k( t )  is the displacement vector of a point t as viewed from the domain Sk and (Xn + iYn)k(t) 
is the vector of stresses acting as viewed from Sk on an area element normal to the attachment curve 
at t, per unit thickness of the plate or the patch. 

It is required to find the stress state of the above structure. 

2. S O L U T I O N  OF T H E  P R O B L E M  

The stresses and displacements in each of the domains Sk (k = 1, 2, 3 4) are found using the well-known 
Kolosov-Muskhelishvili formulae [3] in terms of two functions ~p~(z) and ~t~(z) analytic in S~, which satisfy 
the following conditions on the circles Lt  and L2 by virtue of (1.1) 
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g.(1(~01(t ) + tq~'l(t ) - ~l/l(t)) = g:0cPk(t) - tq)'k(t ) -- ~llk(t), k = 3, 4 

4 

q)l(t) + tq)'l(t ) + Vl(t) + h ,  2 (--1)k(CPk(t) + tCP'k(t) + ~llk(t) ) = 0, 
k = 3  

i 0  
t = R l e  

I.t.(1(q~/c(t) - tq)'k(t ) - Iltk(t)) = 1(0q)4(t) - tq)4(t ) - ~/4(t), k = 1, 2 (2.1) 

2 

(--1)k(q~k(t) + tCp'k(t ) + ~/k(t)) - h.(q)4(t ) + tq)'4(t ) + ~l/4(t)) = 0, 
k - - I  

go  - ho 3 -  v 3 - v  o 
= ~ ,  / ' t ~  = 1( = ~ 1(, ,  = O_<O<2rt, g ,  g "~ h "  l + v '  ~ l + v  o 

i 0  
t = R2e 

For k = 2, 3 the functions cpk(z) and ~k(z) are single-valued in the domain Sk and in the neighbourhood 
of infinity q 

qh(z) = F z + O ( 1 ) ,  ~ [ / 2 ( Z )  = r ' z + O ( 1 )  

1 ~ ~ iXO~y r = 7~(~xl ~ + Oy) + 12ig+ 1(c°w' r '  = ~ ( ( Y y  -- (~x) "l- 

but for k = 1 or k = 4 they have the following form in S k 

q)k(Z) = aklnz + ¢p*(Z), ~llk(Z) = - 1(kaklnz + ~II~(Z), k = 1, 4 

where 1(1 = 1(, ~ = 1(0 and ~p~(z) and ~ ( z )  are single-valued functions in Sk. Since the principal vectors 
of the forces applied at the attachment curve L 1 (or L2) from the left and right, respectively, are equal, 
it follows that 

h(1 + 1()a I + h0(1 + 1(o)a4 = 0 (2.2) 

Bearing the above properties in mind, we will seek the functions 9k(z) and ~k(z) as series 

cpk(z) = aklnz + ~ cnkz ~, Vk(z) = -1(ka~lnz + ~.~ d~kz ~, z ~ Sk (2.3) 
n = - ~  n ~ - ~  

where 

a k = 0, k = 2, 3; 1(1 -- 1(2 -- 1(, 1(3 -- 1(4 -- 1(0; c12 = F, d12 = l"' 

Cn2 = dn2 = 0, n = 2, 3 . . . .  ; cn3 = dn3 = 0, n = - 1 , - 2  . . . .  

Since the complex potentials cpk(z) and ~k(Z) are defined up to complex additive terms Ck and 1(~,  
respectively, it follows that the free terms in series (2.3) may be assumed, without loss of generality, to 
be equal to zero 

m 

Cok = O, dok = 1(kCok = O, k = 1 , 2 , 3 , 4  

On the assumption that the series (2.3) and the series obtained from them by differentiating term by 
term are uniformly convergent in the respective domains Sk, including their boundaries, they may be 
substituted into conditions (2.1), and to determine the remaining unknown coefficients ak, C.k and dnk 
of the series we obtain an infinite system of linear algebraic equations, which may be divided into the 
following finite systems for the different groups of coefficients. 



System 

System 

System 

System 4 

T h e  p r o b l e m  o f  a c i r cu l a r  p a t c h  

1 

~ , ( K C  I I g l  - Cl-"llRl _ d_I-~RI 1) = K o c l 3 g  1 - Cl-33R1 = l(oCl4R 1 - Cl--4R 1 _ d_14RI  1 

h- , l (c l lRl  + ~IIRI + d_l---iRl 1) + Cl4R 1 + cl--4R 1 + d _ I 4 R I  1 = Cl3R 1 + cl-33R 1 

~ ¢ c u R 2 -  c L ~ R 2 -  d-~HR~' = ~¢FR2- F R 2 -  d_,2R21 = la .  1 (KocI4R 2 - c,----4R 2 - d_,---4R2') 

c,,R2 + Cl~R2 + d_l---~R~' + h,(c,4R2 + c,~R2 + d_14R21) = FR2 + rR2 + d_12R2 I 

2 

- -  3_~-~--111R1 ) - -  3 - -  .I~0c 14RI 1 - -  3 - -  l , t ,  (Kc_I1R11 3c31R1 -- = - 3 c 3 3 R  1 - d l a R  1 = - 3 c 3 4 R  l - d14R 1 

h . l < c _ l l R - ~  1 - -  ~ - -  - -  ~ U , 4 R 1  - -  ~ - -  + 3c31Rl + d11R1) + c_14Rll + 3c34RI + = 3c33Rl + d13R 1 

- -  3 - -  - -  3 
l (c  11R21 - 3c31R2 - d l l R  2 = - F R  2 + 1(c_12R21 = I.t,l(l(oC_14R21 - 3c34R 2 - d-14R2) 

c_uR21 + 3c31R2-- 3 + ~ R  2 + h,(c_14R21 + 3c34R2-- 3 + ~-114R2) = c12R21 + ~,R2 

- -  3 - -  3 - -  3 c_14Rll_d_34R13 ~ , ( I C c 3 1 R  1 + c_11Rl  I - d _ 3 1 R l  3) = ~0c33R1 = Koc34R 1 + 

- 1 -  3 - t  - 3  - -  3 - 1  - -  3 
h ,  (c31R1 - c _ I I R  1 + d_31R 1 ) + c34R1 - c_14R 1 + d_34Rl  3 = c33R1 

- -  3 - 1  - -  3 
l (c31R 2 -t- C_l lg21 - d_31g23 c 12R21 - d_32R23 C l4R21 = _ = I t ,  (lC0c34R 2 + - d_34R23) 

- -  3 - 1  + d _ a l R ~ 3  + - -  3 - 1  c31R2 - c_t lR 2 h , (c34R2 - C_lgg 2 4- d 3 4 R 2 3 )  = -c_12R21 + d_32R23 

3 

- -  2 2 _ a 4  _ d 24R12 [ . t , ( l (CEiR2-a1-d_EIR12)  = I~0c23R 1 = I~0c24R 1 

-I 2 +~21R12)+c24R21 + a4 + d-f24Rl 2 2 h ,  (Cz lR  1 + a 1 = c23R 1 

i¢.c21R2_a 1 2  - -  _ d_-~lR22 = _d_-~2R2 2 = ~,-1 (Koc24R22 _ a4-- _ d 2 4 R 2  2 ) -  

c21g  22 + a l  + d---~le2 2 + h,(c24R~ + a4 + d-24R22) = d-22R22 

- -  R 2  2 
~ , (Ka l l n~ - -~ l  - c21(R 2 - R~) ]  = ~oa-41nR2-c24(R~ - R 1  R2I) 

- -  n ÷ 2  n n + 2  n 
].t,(lgC n lR- ln+(n+ 2)C(n+2)lRl - d n l R 1 )  = - ( n +  2)C(n+2)3Rl - d n 3 R  1 = 

t(OC_n4R 1 (n + n+2 n = -n _ 2)c(  n + 2)4R 1 _ dn4R 1 

- -  n n -n ,.s x nn + 2 
h- , l (C_nlg ln+(n+2)C(n+E) iRl+2+dnlR1)+C_n4R1 +(n+.~)C(n+E)41Xl + 

, " i x  ~ ? 1 + 2  I'1 
+dn4Rnl = (n+  /.)C(n+E)3t~l +dn3Rl  

613 
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n + 2  n -n 
KC_nlR2n-(n+ 2)c(n÷2)lR2 - d n l R  2 = ~c n2R 2 = 

-1 -n  ..~ ~ ~ n  + 2 n 
= ~t, (l%C_n4R 2 - (n + z)C(n + 2)4/~2 - dn4R2) 

- n  n 
C_nlR2 + (rl + 2)C(n+ 2)lR2 + 2+ dnlR 2+ 

• - n  n + 2  n n 
+ h , ( c  n 4 R 2  + (n + _ 2 ) C ( n  +2)4R2 + dn4R2) = C n2R 2 

. n + 2  -n - n - 2  ~ n + 2  
~t*(KC(n+2)IRI +nC-nlR1 -d_(n+2)lR 1 ) = l£0C(n+2)a/X 1 = 

= KOC(n+2)4R 1 + 2  + nc n4R-l n_  d(n+2)4R I n - 2  

h - I .  ~ n + 2  -n - n - 2  ]pn+2  -n 
*[C(n+2)lKl -nc_nlRl +d_(n+2)lR 1 ) '1"C(n+2)4-* l -nC_n4R l + 

- n - 2  ~ n + 2  
+d(n+2)4R 1 = C(n + 2)3/~ 1 

K --n + 2 - -  - ---- -n - = 
C(n +2 )1 / (  2 +nc_nlR2n-d_(n+2)lR1 n-2 nC_n2R 2 - d  (n+2)2R2 n-2 

-1 .  ,.,n + 2 -n - n - 2  
= I . t ,  ( l % c ( n + 2 ) 4 t ~ l  +nc_n4Rl -d_(n+2)4R 2 ) 

,-,n + 2 -n - n - 2  + 
C(n + 2)1/I2 -nC_nlR 2 +d_(n+2)lR 2 

-n -n -2  -n -n -2  
+h*(c(n+2)aR2+2-nc-n4R2 +d_(n+z)4R 2 ) = - n C _ n 2 R  2 +d_(n+2)2R 2 

n > 2  

In addition, Eq. (2.2) should be added to System 3. 
System 1-4 are always uniquely solvable, since the homogeneous systems obtained by putting (y~ = 

O~y = "C~xy = 0)= = 0. have only trivial, solutions - because the original, mechanical system in that case has 
only a trivial solution. Hence it follows that System 3 and 4, which are homogeneous, have only trivial 
solutions, and the complex potentials may be represented in the form 

-1 3 
(DI(Z) ~- C_IlZ 4rCIlZ'I'C31Z , l g l ( Z )  = d_31z-3+d_l lZ- l+dl l  z 

-1 
q)2(Z) = C_12Z + FZ, 

3 
~ 3 ( Z )  ---- C13Z'I" C33Z , 

ig2(Z)  d_32Z-3 + -1 = d_12z + r"z 

i g3 (z  ) = dl3Z 
(2.4) 

- 1  3 - 1  
(p4(Z) = C l4Z + ClaZ + C34Z , 11/4(Z) = d_34 z-3  + d_laz + d l4Z 

The coefficients cj~ and djk are found from Systems 1 and 2. 
This confirms our initial assumption, according to which the power series by which the complex potentials 

(pg(z) and ~dk(z) (k = 1, 2, 3, 4) are represented, as well as the series obtained by termwise differentiation 
of the series (2.3), converge uniformly in the respective domains Sk, including their boundaries. 

3. I N V E S T I G A T I O N  OF T H E  S T R E S S  STATE 

By formulae (2.4) and the Kolosov-Muskhelishvili formulae [3], the stresses in the plate and the patch, 
expressed in polar coordinates r, 0 at a point z = re i° ~ Sk, are found from the formulae 

-2 --4 
at(z) k 2ReClk + r Red_lk (Redlk + 4r-2Rec lk = - _ - 3 r  Red 3k)cos20+ 

+ (Imdlk - 4r-2Imc_ik + 3r-4Imd_3k) sin 20 

-2 
~ 0 ( Z ) k  = 2 R e c i k  - r Red_l k + (12r2ReC3k + R e d l k -  3r-4Red 3k)COS20_ 

2 -4 . (3.1) 
-- (12r Imc3k + Imdlk  + 3r  Imd_3, ) sin20 
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.CrO(Z)k _ r-Zlmdlk + (6r2imc3k + imdl k + -2 -4 = 2r Im c_ ik -3 r  Imd_3k)cos20+ 

+(6r2Rec3k+Redlk-2r-2Rec_lk+3r-4Red_3k)s in20;  k = 1 ,2 ,3 ,4  

where 

C32 ---- C_13 = d_13 = d_33 = 0 ,  Cl2 = F ,  d12 = F '  

and the remaining coefficients Cjk and djk are found from Systems 1 and 2. 
Let  us determine at which point of the circle [z [ = r the stresses take extremal values. To that end, 

we rewrite formulae (3.1) as follows, omitting the arguments and indices in the stresses for greater 
convenience 

(Yr = 1~1 " l - R e ( b l e 2 i ° ) ,  ~o = 0~2 +Re(b2e2i°), "era • 0~3 + Im(b3 e2iO) 

where ~1, (x2 and ~3 are real coefficients independent of the polar angle 0 and 

- 4 - -  b I =--d~k--4r-Ec_lk+3r  d_3k, bE = 12r2c3k+dlk-3r-4d_3k 

2 - 2 - -  - - 4 - -  
b 3 = 6r c 3 k + d l k - 2 r  c_ lk+3r  d_3k 

Since 

C32 = C 1 3  = d_33 = 0 ,  d12 = F '  

and the remaining unknown constants C3k, C-lk, dlk and d_3k may be found from System 2, where these 
unknown appear with real coefficients, it follows that bj = [~jF', where ~j are certain real numbers. 
Consequently 

(Yr = 0~1 + ~31iF'l Reei(argr' + 2°), ~ 0  = 0~2+ ~21F'[ Reei(argr' + 2°) 

T, rO -~ Of, 3 4" ~31F'{Ime i(argr' + 2°) 

and the stresses Or and ~0 attain their extremal values on the circle Iz[ = r at polar angles 01 = -(argF')/2 
and 02 = (n - argF')/2; the stress Xr0 attains its extremal values at 03 = (n - 2 argF')/4 and 04 = 
- (n  + 2 argF')/4. 

Thus, on each circle [z I = r the extremal values of the stresses are attained at points that have the 
same polar angles 01, 02 or 03, 04, which depend neither on the polar radius of these points nor  on the 
elastic and geometric parameters of the plate and the patch; they depend only on argF',  that is, on the 
force parameters which act at infinity. Now, in order to determine the extremal values of the stresses 
in each of the domains Sk, one must put 0 = 01, 0 = 02 or 0 = 03, 0 = 04 in formulae (3.1) and, considering 
the resulting power functions of the polar radius r, find the extremal values as r varies between limits 
determined by Sk. 

To determine the displacements of the points of the curves L 1 and L2, we use the following formulae 
[3] 

T 

21a0(u + iv)k(z) = K:0%(z)- z % ( z ) -  ~k(z),  z ~ Sk; k = 3, 4 

and formulae (2.4). After elementary reduction, we obtain 

Rl - -  2 ~-~13)e-iO + (•ocl3 ~-~13)eiO + ~2 3i0, (u + iv)(Rl eiO) = ~ 0  ( -  (3c33R1 + - I%c33Kle ) 

(u + iv)(R2 el°) 2-~0( ( i%c_14R22  - -  2 = - 3c34R 2 - d-lla)e -i° + 

+ (K~ocl4 -- C14 -- d_14R22) eiO + (1%C34 R2 + c---~4R22 - d-~'~R-4"e3i°)-34 2 ) 
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E x a m p l e s .  Suppose the plate and the patch, the thickness of which is half that of the plate, have 
elasticity constants p = 40 MPa, v = 0.37 and P0 = 174.2 MPa, v0 = 0.22, corresponding to Cu-AI203 
combination. The radii of the cut-out and the patch are in proportion as 1:2. Only a shearing stress 
X~y = x MPa (per unit thickness of the plate) is applied to the plate at infinity. All other  initial force 
parameters are zero. 

The solid curves in Fig. 1 represent the curves into which the boundaries of the cut-out Lt  and the 
patch L2 are deformed, and the dashed curves are their initial positions before the load is applied. For 
greater clarity, the displacements of the points of the curves L1 and L 2 are taken with the coefficient 
~/(2"~R2). 
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In Fig. 2 we show graphs of the stresses Xr0 and G0 from inside and outside the attachment curves as 
viewed both form the plate and from the patch, as functions of the polar angle 0 (0 _< 0 < n). The stresses 
are symmetrically distributed on the lower half of the curve L1 (-n <_ 0 < 0). Here and below the number 
1 labels the graphs of the stresses on L1 from inside as viewed from the plate, the numbers 2 and 3 
label the graphs of the stresses on L 1 from outside as viewed from the patch and the plate, respectively, 
and number 4 labels the graphs of the stresses in the case of the classical problem of the stretching of 
a plate with a stress-free cut-out ]z I ___ R 1 subject to a distant load X~y = "~. The stress values in all the 
graphs are taken with coefficient x -1. 

In Fig. 3 we show graphs of the stresses G 0 of maximum magnitude in the plate and the patch, as 
functions of the quotient r/R1 of the polar radius and the radius of the inner attachment curve (a), and 
graphs of the maximum of the same stress I 01 on the attachment curves L1 and L2 as functions of the 
quotient of the radii of the patch and the initial cut-out (b), of the quotient h/ho of the thicknesses of 
the plate and patch (c), and of the quotient g/g0 of the shear moduli of the plate and the patch (d). 
The solid curves in Fig. 3 correspond to the stress max [ G0 [/'c in the patch, and the dashed lines to the 
stress in the plate. The new numbers 5 and 6 in the remaining parts of Fig. 3 label the graphs of the 
stress max I or0 I/z on the curve L2 from inside as viewed from the plate and the patch, respectively, and 
the number 7 labels the graphs of the stress on L2 from outside as viewed from the plate. In all cases 
maxl~01 is attained at points with polar angles 0 = +_.n/4 and 0 = +-3n/4. When there is no patch, 
max l~01 on the boundary L 1 of the stress-free cut-out Izl -R~ equals 4z. 
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